
Your manager assigns you a new testing
project. “I want you to take over the

system integration testing of the Web Time
Charging System (TCS). We’ve got three
weeks to get it out the door and we’re con-
cerned about the integration of all the
Web-TCS components.”

The neural cogs in your head start
churning. You know the Web TCS must
run on your standard Brand X and Brand Y
central processing units and the company’s
current operating systems (OS): Win 98,
Win NT, Win 2000, and Win XP. Each of
these platforms must support Microsoft
Internet Explorer Version 5.5 and 6.0 and
Netscape Version 7.0.

Your manager interrupts your daze and
says, “And I don’t have to remind you
about what that last delivered bug cost us.”

“What? Oh yeah! I’ll get right on it,”
you profess, while your manager hurries off
to another meeting.

The Web TCS has two operational net-
work modes: internal intranet and modem
remote. Employees can log their time in
both modes. Various default parameters are
established depending on the user’s type of
employee classification, including salaried,
hourly, part-time, or contractor. These
parameters include default shift, available
paid holidays, etc. Also, the user can set the
time increment in minutes to six, 10, 15, 30,
or 60.

These features and parameters will be
combined into various test configurations,
however, one key question is, “What is the
most effective, smallest set of test configu-
rations that will find the majority of serious
parameter interaction defects?” (I’ll answer
that soon.)

The TCS is defined by five principal use
cases1. System-level test scenarios will be
defined to exercise each use-case in the var-
ious test configurations chosen. The use-
cases are listed as follows:

1-Login
2-Log Time
3-Submit Time Sheet
4-Maintain Charge Codes
5-Select Time Period

The test group has already defined 15
test scenarios to use to test each test con-
figuration. Test scenarios for the Login
use-case include (1) successful login on first
attempt, (2) successful login after one failed
attempt, and (3) unsuccessful login after
three failed attempts. Twelve similar test
scenarios were defined for the other four
use-cases.

Management has expressed concern
about integration defects delivered in
recent releases. Any seriously defective
interactions between features and various
user-assigned and system configuration
parameters could prove fatal to the Web
TCS upgrade effort and the future of your
group (you’ve heard this before). At any
rate, you need to test each parameter paired
with every other parameter to be sure that
there are no incompatibilities. I will discuss
a simple, straightforward approach for
obtaining or getting very close to a mini-
mum set of test configurations that the
reader will be able to immediately use on
his or her project.

This approach or technique will answer
the question posed earlier, “What is the
most effective, smallest set of test configu-
rations that will find the majority of serious
parameter interaction defects?” Notice the
qualification “majority of serious …
defects.” Remember that no amount of
testing can find all defects. However, most
people accept as self-evident that effective
testing techniques can lead to increased
confidence and to fewer delivered defects
and happier customers. This does not
mean that these techniques should displace
other effective and efficient means for
improving or assuring the quality of the
system.

What Have We Got?
Essentially, there are six parameters called
test factors that are of most interest from a
system integration testing perspective.
Table 1 lists the six test factors with their
associated options. If all combinations of
these factors were tested, that would
require the following:

2x4x3x2x4x5 = 960 test configurations

Since each test configuration requires 15
system-level test scenarios, the result is a
total of 960 x 15 = 14,400 test scenarios
that must be executed. There is not time to
execute all 14,400 test-scenarios in three
weeks. Say that it takes about three hours to
execute the 15 test scenarios for each con-
figuration, which includes setup and report-
ing. If you consider that there are about six
hours per day of productive test execution
time, not counting unpaid overtime that
you covertly plan to minimize, that gives
you 90 hours or 30 test configurations that
you have time to perform. Is there hope?
Can you test all important combinations of
parameters in less than 30 test configura-
tions?

One approach in minimizing the num-
ber of test configurations that some organ-
izations use is to test the most common –
or important – configuration and then vary
one or more parameters for the next test
configuration and then test that. Looking at
Table 1, you can see that a minimum of five
test configurations (rows) are required to
test all options at least once. Just look at
each row and pick the assigned values. For
columns that have dashes, use the preced-
ing value. However, the concern is to test
for possible bad interactions between
parameters. This method will not be ade-
quate. Madhav Phadke and others have
focused on combinatorial testing tech-
niques that arguably “have the highest
effectiveness, measured in terms of the
number of faults detected per test” [3].

Identifying a minimum set of tests that
check each parameter interacting with every
other parameter (i.e., all pairs of parame-
ters) is often a very difficult venture if pur-
sued in an ad hoc, non-systematic fashion.
Orthogonal arrays (OAs) provide a system-
atic means for identifying a minimal set of
highly effective tests. Unfortunately, some
training in combinatorial software testing
techniques available in the industry today is
not very helpful in teaching this. But before
discussing how to use OAs effectively to

26 CROSSTALK The Journal of Defense Software Engineering August 2003

Software Engineering Technology

New Spreadsheet Tool Helps Determine Minimal Set
of Test Parameter Combinations

Gregory T. Daich
Software Technology Support Center

Combinatorial testing is a method for identifying incorrect interactions between various parameters called test factors, usually
with a goal to run a minimum number of tests. “Give us your tired, your poor, your huddled … (testers) yearning to breathe
free” [1] from executing endless and senseless combinations of test cases. This article explains how to minimize test parame-
ter combinations using a new spreadsheet tool called ReduceArray2.

August 2003 www.stsc.hill.af.mil 27

find that minimal set, I need to outline a
basic fault model of interest when conduct-
ing integration testing, and introduce a little
terminology.

Basic Fault Model
Jeremy Harrell published a technique that
he calls the Orthogonal Array Testing
Strategy (OATS) for manually computing a
set of tests from published OAs that is very
effective [4]. He does a good job of charac-
terizing a basic fault model that is the foun-
dation for using the OATS technique,
which is as follows [4]:
• Interactions and integrations are a

major source of defects.
• Most … defects are not a result of

complex interactions such as, “When
the background is blue and the font is
Arial and the layout has menus on the
right and the images are large and it’s a
Thursday then the tables don’t line up
properly.” Most of these defects arise
from simple pair-wise interactions such
as, “When the font is Arial and the
menus are on the right the tables don’t
line up properly.”

• With so many possible combinations of
components or settings, it is easy to
miss one.

• Randomly selecting values to create all
of the pair-wise combinations is bound
to create inefficient test sets and test
sets with random, senseless distribution
of values.
Phadke adds to this basic fault model

with his discussion about the following test-
ing techniques [3]:
• One-Factor-at-a-Time Testing. This

method varies one factor at a time and
would require more than the minimum
five tests mentioned earlier. But this
makes it easier to identify the defective
parameter. However, this technique
does not expect to encounter any bad
interactions between the given parame-
ters since it does not attempt to cover all
the pairs of parameters. It only finds
what Phadke calls single-mode faults.

• Exhaustive Testing. For any non-triv-
ial system, this will not be possible.
Even if all 960 test configurations were
tested, which would find nearly every
bad interaction between the given
parameters, there will be many more
tests with varying circumstances that
could be conceived that could take a
lifetime and more to conduct.

• Deductive Analytical Method. This
method attempts to cover all important
paths in the code. Any testing strategy
should be augmented by some of this
type of testing. In fact, this is one type
of testing that developers should con-

duct on their new components prior to
integration testing.

• Random/Intuitive Method. This is
the most common method used by
independent test organizations. This
method can be very effective at finding
defects but the level of coverage is
often questionable.

• Orthogonal Array-Based Testing.
This method finds all double-mode
faults that are two parameters conflict-
ing with each other. An example of a
double-mode fault is one parameter
overshadowing another, inhibiting
required processing of that other
parameter.

Terminology
Some introductory terms for understand-
ing OAs include the following [4]:
• Orthogonal Array. Two-dimensional

arrays that possess the interesting
quality that by choosing any two
columns in the array you receive an
even distribution of all the pair-wise
combinations of values in the array.

• Runs. The number of rows that are
the potential test configurations or
test cases.

• Factors. The number of columns
that are variables or parameters of
interest.

• Levels. The number of options or
values for each factor.

• Strength. The number of columns it
takes to see each option equally often.

• OAs. These are named OA(N, sk, t) or
OA(N, sk) if its strength is two. This
indicates an OA with N runs, k fac-
tors, s levels, and strength t.

• Mixed Arrays. These are named
MA(N, s1k1, s2k2, etc.). This indicates a
mixed-level, asymmetric OA with N
runs, k1 factors at s1 levels, k2 factors
at s2 levels, etc., and with strength 2
(assume strength 2 if it is not stated).
Note that the number of runs is

dependent on the number of factors, lev-
els, and strength. For example, OA(9,43)
means you have 9 runs required to cover
4 test factors with 3 options each (see
Table 2). Since the strength is assumed 2,
this OA covers all pairs of parameters.
OA(64,64,3) means you have 64 runs

required to cover all three-way combina-
tions (strength 3) of six test factors with
four options each. Look these up on the
Web or in a book on statistics2.

A Powerful Technique
It is not easy to create non-trivial OAs,
which are OAs with more than three fac-
tors. Furthermore, some currently avail-
able automated tools that produce sets of
tests covering all pairs of parameters do
not create actual OAs or a minimum set
of tests. After all, it is a very difficult, dis-
crete mathematics problem to create
OAs. These tools may come fairly close
to a minimum set but if you can save
yourself from having to run even one
more test, you are going to want to find
that minimal set, especially if it does not
require investing any more time. There
are tools that can compute OAs or all pair
combinations resulting in a minimal set
of tests for all reasonable numbers of
factors and options but they may cost
much more than you may want to spend3.

The OATS technique for manually
generating a minimal or near minimal set
of tests is actually better than some tools
I have seen. In other words it produces a
smaller set of tests that exercise all pair-
wise combinations of parameters. OATS
is simple and straightforward and should
be used by a lot more organizations to
help with software and system integration
testing efforts. Briefly, it includes the fol-
lowing steps [4]:
1. Decide the number factors to test.
2. Decide which options to test for each

factor.
3. Find a suitable OA with the smallest

number of runs to cover all factors
and options.

New Spreadsheet Tool Helps Determine Minimal Set of Test Parameter Combinations

A B C D E F

CPU OS Browser Network Type of Employee Time Increment

Brand Y NT IE 6.0 Modem Salaried 6

Brand X 98 IE 5.5 Internal Hourly 10

-- 2000 NS 7.0 -- Part-Time 15

-- XP -- -- Contractor 30

-- -- -- -- -- 60

Table 1: Test Factors and Options

2 1

2 0
2 0 2

2 0 2 2

A B C D
1
2
3

0 0 0 0

4

0 1 1 2

5

0 2

6

1 0 1 1

7

1 1

8

1

2 1 0 1
9 2 2 1 0

Table 2: OA(9,43)

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering August 2003

4. Map the factors and options onto the
array.

5. Choose values for any options that are
not needed (call them leftovers) from
the valid remaining options and delete
any columns (factors) that are not
needed. A given test situation may not
need all the factors or all the options
that a particular OA provides.

6. Transcribe the runs into test cases,
adding additional combinations as
needed.
The selection of which OA to use can

pose a bit of a challenge. The good news
is that you do not generally need to com-
pute a new OA for many test situations.
As the technique discusses, if there is not
a specific OA for your test situation, you
can use one that is similar, delete extra
factors (columns), and choose values for
the extra options consistent with your
test situation. In other words, the real
work in creating the arrays has already
been done. And it only takes a few min-
utes to apply the array to a specific test

situation. That is pretty powerful, but not
enough people know about it.

Techniques vs.Tools
When using the OATS technique to identi-
fy a minimal set of tests, you may encounter
an OA where each pair appears more than
once but the same number of times (even-
ly). This may be considered overkill from a
software testing perspective since all you
usually want is to test each pair once.
However, identifying the actual minimum
set and eliminating any overkill is generally
difficult and time consuming without the
aid of a tool to quickly and easily see the
pair combination counts. Thus, I have pre-
pared an Excel spreadsheet tool called
ReduceArray2 that computes the total num-
ber of pairs of parameters possible based
on the array’s factors and options, and it
identifies any missing pairs4. It counts the
number of unique pairs in the array for
each row from top to bottom so you can
compare it with the total number of pairs.
It also computes the number of occur-

rences of each pair in the array and displays
them in the spreadsheet in a concise and
easily analyzed form.

Table 3 shows the results of analyzing
OA(9,43) using the ReduceArray2 tool. The
top row identifies the columns in the
spreadsheet. The left column identifies the
rows in the spreadsheet. This makes it fairly
simple to identify any extra test cases so that
rows can be deleted to reduce the size of
the array. Extra test cases are rows with no
unique pairs. Note that every pair in
OA(9,43) is unique, thus every one is need-
ed. However, the OATS technique will
often have values that are not needed (called
leftovers) that will create redundant pairs
that can be rearranged to create rows with
no unique pairs that can then be deleted.

In order to identify a set of tests for the
factors and options in Table 1 using the
OATS technique, you could use OA(25,56).
This would result in 25 tests. Additional
rows could be deleted after rearranging
some pairs but that would require some
fairly labor-intensive study and manual
effort without tool support. Also, using one
automated tool with which I am familiar
produced 26 tests for the test situation in
Table 1.

Using ReduceArray2 to assist in finding
extra tests, I was able to reduce the set to
20, which is the minimum number of con-
figurations to test all pairs for this situation.
The minimum count of 20 was derived
from the two factors with the most options.
The Time Increment factor has five options
and the OS factor has four options. Thus,
we know that there must be at least 5 x 4 =
20 runs to cover all combinations of those
two options. The trick is to cover all the
other pair combinations in those 20 runs.
With the visibility provided by the
ReduceArray2 tool, this became a much
easier task.

Demonstration
The following uses the OATS technique
augmented with a few extra steps to identi-
fy a minimal set of tests to cover all pairs.
To simplify the demonstration and reduce
the number of tests, only look at the test
factors and options A, C, D, and E in Table
4. The following lists each OATS step with
our actions in italics:
1. Decide the number of factors to test.

We chose the four test factors in Table 4.
2. Decide which options to test for each

factor. The options for test factors A, C, D,
and E are listed in Table 4.

3. Find a suitable OA with the smallest
number of runs to cover all factors and
options. A suitable OA was selected that is
OA(9,43), see Table 2. A suitable array has
at least the number of factors and options with

A B C D E F G H I J K L M N
TP 54

2 A B C D TC# RP UP A:B A:C A:D B:C B:D C:D

3 0 0 0 0 1 6 6 1 1 1 1 1 1

4 0 1 1 2 2 6 6 1 1 1 1 1 1

5 0 2 2 1 3 6 6 1 1 1 1 1 1
6 1 0 1 1 4 6 6 1 1 1 1 1 1
7 1 1 2 0 5 6 6 1 1 1 1 1 1
8 1 2 0 2 6 6 6 1 1 1 1 1 1
9 2 0 2 2 7 6 6 1 1 1 1 1 1
10 2 1 0 1 8 6 6 1 1 1 1 1 1
11 2 2 1 0 9 6 6 1 1 1 1 1 1
12 SP 54

TP = Total Pairs (54)
UP = Unique Pairs (Six on Each Row)

SP = Sum of Pairs (54)TC# = Test Case Number

RP = Number of New Pairs on a Row (Six on Each Row)
A:B = Column A Paired With Column B, etc.

Array1 Results

Table 3: Results of Analyzing OA(9,43)

A C D E
CPU Browser Network Type of Employee

Brand X IE 5.5 Internal Salaried

Brand Y NS 7.0 Modem Hourly

-- -- -- Part-Time

Table 4: Subset Test Situation

B C D
1
2 A C D E
3 0 0 0 0
4 0 1 1 2
5 0 2 2 1
6 1 0 1 1
7 1 1 2 0
8 1 2 0 2
9 2 0 2 2
10 2 1 0 1
11 2 2 1 0

Array
A

00

1
1

1
0

0 0

0

Table 5: Subset Test Situation With Leftovers
Highlighted

A B C D
1
2 A C D E
3 0 0 0 0
4 0 1 1 2
5 0 0 0 1
6 1 0 1 1
7 1 1 1 0
8 1 1 0 2
9 0 0 1 2
10 1 1 0 1
11 0 0 1 0

Array

Table 6: Subset Test Situation With Leftovers
Assigned

New Spreadsheet Tool Helps Determine Minimal Set of Test Parameter Combinations

August 2003 www.stsc.hill.af.mil 29

a minimum of leftovers. In this case, there are
no leftover factors (columns) and factors A, C,
and D each have one leftover option.

4. Map the factors and options onto the
array. Table 5 identifies the leftovers that are
the highlighted boxes.

5. Choose values for any leftovers from
the valid remaining options and delete
any columns that are not needed. Harrell
[4] rightly suggests that we assign alternating
values for each factor as shown in Table 5. The
array with the newly assigned options is shown
in Table 6.
5a. (Extra step) Delete any rows that

have no unique pairs. Table 7 shows
the results of analyzing our subset test sit-
uation. Spreadsheet row 11 contains no
new pairs in the row (see under RP head-
ing). This row can be deleted. After delet-
ing row 11, reanalyze the array to produce
Table 8.

5b. (Extra step) Rearrange cell values to
create a row with no unique pairs. If
this cannot be done, then quit; oth-
erwise, go back to step 5a. Row 10
column M shows that the B:D columns
pair is unique (only one occurrence). Move
that pair combination to row five by assign-
ing the value one to B5 (note that this is the
spreadsheet cell location) as shown in Table
8. The results of reanalysis after reassign-
ing cell B5 are shown in Table 9.
Continuing steps 5a and 5b produces
Table 10 with six resulting test cases.

6. Transcribe the runs into test cases,
adding combinations as needed. Table
11 (see page 30) shows the transcribed values
that define the configurations for testing interac-
tions between test factors A, C, D, and E in
Table 4.
“Wait a minute!” you say. “Steps 5a and

5b are easier said than done.” You are right,
especially if you have more factors! The
ReduceArray2 tool displays the number of
unique pairs automatically in each row so
that you can identify any rows that are not
adding new pairs of parameters. They are,
in other words, overkill, so you can delete
them. After deleting a row, you need to
recompute the pair counts so you can iden-
tify other rows with no unique pairs that
can be deleted. If no rows can be deleted,
then you would try to rearrange cell values
to create a row with no unique pairs.

Further Automation
Now that I have described the OATS tech-
nique and my extensions to further reduce
the number of test combinations using the
ReduceArray2 tool, I have some more good
news. ReduceArray2 also does steps 5a and
5b automatically using its embedded
ReduceArray2 macro. In other words, do
steps one through five and then use the

ReduceArray2 macro to automatically
rearrange parameter values and delete extra
rows without losing any pair combinations.

ReduceArray2 provides a near minimal
set of tests using simple one-cell-at-a-time
rearrangements. If you start with a better
initial arrangement, you may be able to
reduce it further. ReduceArray2 saves a lot
of time and effort and will find a minimum
set for some configurations. Furthermore,
you can define specific combinations that
are required and specific combinations that

are to be excluded. I would be happy to
walk you through a demonstration on this.
Another macro called Names automatically
transcribes the OA values to the names in
Table 11, page 30.

Epilogue
Go back to the original test situation. Using
ReduceArray2, you can create a set of 20
test configurations from the test factors and
options in Table 1. You have time to run 15
test scenarios in each of the 20 test config-

A B C D E F G H I J K L M N
1 Array TP 30 Result

A C D E TC# RP UP A:B A:C A:D B:C B:D C:D
0 0 0 0 1 6 1 4 3 2 3 2 1
0 1 1 2 2 6 2 1 2 2 2 2 1
0 0 0 1 3 3 1 4 3 1 3 2 2
1 0 1 1 4 5 2 1 2 2 2 2 1
1 1 1 0 5 4 2 3 2 1 2 1 2
1 1 0 2 6 4 1 3 2 1 2 2 2
0 0 0 2 7 1 1 4 3 2 3 1 2
1 1 0 1 8 1 1 3 2 2 2 1 2
0 0 1 0 9 0 0 4 2 2 2 2 2

12 SP 30
Note: Cells with X can be any valid value (called "do not cares")

3
4

2

5
6
7
8
9
10
11

Table 7: Subset Test Situation Results of Analysis

A:B

A B C D E F G H I J K L M N
TP 30 Result

2 A TC# RP UP A:DA:C B:C B:D C:D
0 0 0 0 1 6 3 3 3 1 3 1 1

4 1 1 2 6 3 1 1 2 2 2 1
0 0 0 1 3 3 1 3 3 1 3 2 2
1 0 1 1 4 5 3 1 2 2 1 2 1

7 1 1 1 0 5 4 3 3 2 1 2 1 1
1 1 0 2 6 4 1 3 2 1 2 2 2
0 0 0 2 7 1 1 3 3 2 3 1 2
1 1 0 1 8 1 1 3 2 2 2 1 2

11 SP 30

Array1

3

5
6

8
9
10

0

EC D

2

A B C D E F G H I J K L M N

1 TP 30 Result

2 A C D E T RP UP A:B A:C A:D B:C B:D C:D
3 0 0 0 0 1 6 3 2 3 1 2 1 1
4 0 1 1 2 2 6 2 2 1 2 2 2 1
5 0 1 0 1 3 4 1 2 3 1 3 2 2
6 1 0 1 1 4 6 4 1 2 2 1 1 1
7 1 1 1 0 5 4 3 3 2 1 2 1 1
8 1 1 0 2 6 3 1 3 2 1 3 2 2
9 0 0 0 2 7 1 1 2 3 2 2 1 2
10 1 1 0 1 8 0 0 3 2 2 3 2 2
11 SP 30

Array

C#

Table 8: Subset Test Situation Reanalysis After Deleting a Row

A B C D E F G H I J K L M N
TP 30

2 A C D E RP UP A:B A:C A:D B:C B:D C:D
3 0 0 0 0 1 6 4 2 2 1 1 1 1
4 0 0 1 2 2 5 4 2 1 1 2 1 1
5 1 0 1 1 3 5 4 1 2 1 2 1 1
6 1 1 1 0 4 5 4 2 2 1 1 1 1
7 1 1 0 2 5 5 4 2 1 1 2 1 1
8 0 1 0 1 6 4 4 1 2 1 2 1 1

309

Array Result1

TC#

SP

Table 9: Subset Test Situation Reanalysis After Reassigning Cell B5

Table 10: Final Results Six Test Cases

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering August 2003

urations within the timeframe mandated by
management. And you even have time to
rerun some tests if you encounter some
defects and must retest the system.

By the way, I meant no disrespect in this
article’s preface to the poem written by
Emma Lazarus enshrined on a plaque near
the Statue of Liberty. But since I have seen
literally thousands of tired testers yearning
for more effective and more efficient test
techniques in my software test-consulting
career, I thought I would borrow the theme.

The test situation in this article was con-
trived. Details about actual feature require-
ments were ignored to simplify the discus-
sion. But it does make the point that, when
you know the features and parameters that
could possibly interact incorrectly with each
other, then you can follow a simple system-
atic approach to identify a minimal or near
minimal set of tests to test all parameter
pairings. That is a powerful capability. You
can still pick and choose which test runs to
ignore and which additional ones to add.
However, identifying the test factors and
options in the first place is often very diffi-
cult. More research is needed in this area.

It is interesting to note that Phadke’s
perspective back in 1997 was that,

… the number of tests needed for
(the OA testing) method is similar to
the number of tests needed for the
one-factor-at-a-time method, and
with a proper software tool (likely
his Robust Testing Method tool),
the effort to generate the test plan

can be small. [3]

Harrell’s article [4] and this article show
you how to create tests without expensive
tools; if you have Internet access, download
some OAs. Also, I have shown you how to
augment the OATS technique with a few
additional steps to reduce the number of
tests for many types of test situations where
you have leftovers. This method also works
when the OA has multiple occurrences of
pairs that are common when the number of
factors is higher. Of course, the Reduce
Array2 tool makes it even easier to do this.

Whether you are following formal prac-
tices, using defined processes advocated by
the Software Engineering Institute’s
Capability Maturity Model®, or you are
applying agile exploratory testing [5] meth-
ods, this combinatorial testing technique
will certainly help you obtain better integra-
tion test coverage. When you are concerned
about various features and parameters
interacting incorrectly with each other, use
this OATS technique augmented with the
ReduceArray2 tool or purchase and use a
tool such as Automatic Efficient Test
Generation. It may not be worth the risk of
letting those defects get delivered to your
customer.◆

References
1. Lazarus, Emma. “The New Colossus.”

Statue of Liberty plaque.
2. Rational Unified Process, 2001, Use

Case Template.
3. Phadke, Madhav S. “Planning Efficient

Software Tests.” CrossTalk Oct.
1997.

4. Harrell, Jeremy M. “Orthogonal Array
Testing Strategy (OATS) Technique.”
Seilevel, 2001 <www.seilevel.com/
OATS.html>.

5. Bach, James. “Exploratory Testing
Explained.” Ver. 1.1. Satisfice, Inc., 19
Jan. 2003 <www.satisfice.com>.

Notes
1. A use case is a description of a

sequence of actions that a system per-
forms that yields an observable result of
value to a particular actor (user) [2].

2. See Sloane, N. J. A. “A Library of
Orthogonal Arrays” <www.research.
att.com/~njas/oadir>. Also see Sher-
wood, George. “On the Construction
of Orthogonal Arrays and Covering
Arrays Using Permutation Groups”
<http://home.att.net/~gsherwood/
cover. htm>.

3. See the Automatic Efficient Test
Generation System by Telecordia
Technologies at <http://aetgweb2.
argreenhouse.com>.

4. Available at no cost at <www.stsc.
hill.af.mil>.

About the Author

Gregory T. Daich is a
senior software engi-
neer with Science
Applications Interna-
tional Corporation
currently on contract

with the Software Technology
Support Center (STSC). He supports
STSC’s Software Quality and Test
Group with more than 26 years of
experience in developing and testing
software. Daich has taught more than
100 public and on-site seminars
involving software testing, document
reviews, and process improvement.
He consults with government and
commercial organizations on improv-
ing the effectiveness and efficiency of
software quality practices. He has a
master’s degree in computer science
from the University of Utah.

Software Technology
Support Center
OO-ALC/MASEA
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820
Phone: (801) 777-7172
E-mail: greg.daich@hill.af.mil

A C D E

CPU Browser Network Type of Employee

Brand X IE 5.5 Internal Salaried

Brand X IE 5.5 Modem Part-Time

Brand Y IE 5.5 Modem Hourly

Brand Y NS 7.0 Modem Salaried

Brand Y NS 7.0 Internal Part-Time

Brand X NS 7.0 Internal Hourly

Table 11: Transcribed Options

The Software Technology Support Center’s
No-Cost Service Offer

If you will identify the factors and options for your particular system, the Software
Technology Support Center (STSC) can either help you to identify a minimal or near
minimal set of tests to test all pair-wise combinations, or the STSC can identify these
for you. Information can be easily received by e-mailing a spreadsheet formatted like
Table 1 to the STSC HelpDesk. This is a no-cost service offer to Department of
Defense (DoD) organizations. Go to <www.stsc.hill.af.mil> for more information. Of
course, non-DoD organizations are welcome to inquire also. We have seen the develop-
ment costs for many organizations reduced because of the information we have shared
with DoD organizations and their contractors.

